
International Journal of Heat and Mass Transfer 48 (2005) 4846–4853

www.elsevier.com/locate/ijhmt
Periodic heat transfer by forced laminar boundary layer
flow over a semi-infinite flat plate

G.E. Cossali
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Abstract

The paper reports a study of periodic convection in a steady forced laminar boundary layer flow over a semi-infinite
impermeable flat plate due to periodical variation of the wall heat flux. The Fourier transform based approach allows to
obtain a transfer function for the boundary layer that can be used to solve also transient (non-periodic) heating prob-
lems, and examples are reported comparing with available studies in the open literature. The effect of periodic heating
on the value of the the average heat transfer coefficient is analysed and it is found to be important for relatively high
frequency fluctuations of the imposed heat flux, whereas fluctuation amplitude of the instantaneous heat transfer coef-
ficient is non-negligible also for lower exciting frequency.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the field of heat transfer technology, the unsteady
forced convection represents a main topic as many ther-
mal systems (like heat exchangers, turbomachines etc.)
are often subjected to time variations of thermal bound-
ary conditions. Unsteady forced convection in laminar
external flows is of fundamental importance in many as-
pects of practical engineering and modern technology, as
witnessed by the large amount of theoretical and exper-
imental studies on this subject. Among others, the case
of steady momentum boundary layer flows subject to
variable thermal boundary conditions is of great impor-
tance for the implications to heat transfer problems.
These problems can be classified as transient or periodic,
with respect to the dependence on time of the boundary
conditions, and the first ones have certainly been the
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most investigated. Several studies can be found in the
open literature concerning the solution of the unsteady
energy equation for laminar external flow with step
changes in the wall temperature, for example Riley [1],
Chao and Cheema [2], Dennis [3], Van Dyke [4], studied
the problem of the transient heat transfer initiated by a
step change in the temperature (uniformly distributed)
of the plate over which a fluid is flowing. More recently
the transient heat transfer due to the generation of an
impulsive heat flux step change on the upper face of
the flat plate was studied and several works dealing with
this problem can be found [5–11]. Studies about periodic
problems are less common, despite of the importance in
many advanced applications like, for example, cooling
of satellite components, solar energy transformation
etc. but also as methods to measure heat transfer coeffi-
cient [12]. There is a trend to extrapolate the use of the
heat transfer coefficient to transient regimes as well
and all the experimental evaluations of this coefficient
with transient methods rely on the assumption that heat
ed.
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Nomenclature

d,D thickness, d ¼ D
L

f non-dimensional stream function
h convective heat transfer coefficient
k thermal conductivity
L characteristic length
P free stream-wall temperature difference
Pr Prandtl number
q heat flux
ReL Reynolds number
T temperature
~t, t time, t ¼ ~tU1

L
~u,u velocity along the plate, u ¼ ~u

U1
U1 free stream velocity
~v,v velocity normal to the plate, v ¼ ~v

U1
~x,x Cartesian coordinate along the plate, x ¼ ~x

L
~y,y Cartesian coordinate normal to the plate,

y ¼ ~y
L

Greek symbols

a thermal diffusivity
c phase delay
g,n non-dimensional coordinates
H,h,h* non-dimensional temperatures
s, ŝ non-dimensional times, s ¼ ~tU1

~x ¼ t
x ; ŝ ¼

sPr�1=3

U non-dimensional temperature gradient at
the wall surface

w stream function

Subscripts

a time averaged
i, r imaginary and real parts of complex number
st steady
w wall surface
1 free stream
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transfer coefficient is not influenced by the temperature
unsteadiness (see for example [12,13]), despite of the
existing experimental [14] and theoretical [15,16] evi-
dence that in transient methods the heat transfer coeffi-
cient varies with time. The purpose of the present
investigation is to determine the evolution of the heat
transfer process for incompressible forced laminar flow
over a semi-infinite plate subjected to periodic variation
of the wall heat flux. It is assumed that the periodic re-
gime is always reached. This approach allows to define
a sort of boundary layer transfer function that can be
used to deal also with unsteady non-periodic boundary
conditions and proper comparison with available results
are reported. In the author knowledge, this situation has
not been previously treated in the literature.
2. Basic equations

Under constant properties conditions and with zero
pressure gradient, the similarity solution approach to
mass and momentum conservation equations, for the
steady laminar boundary layer over a semi-infinite flat
plate, leads to the well known equation (see for example
[17]) for the non-dimensional stream function
f ðgÞ ¼ wRe1=2L x�1=2:

fggg þ
1

2
fggf ¼ 0

fgð0Þ ¼ 0; f ð0Þ ¼ 0; f gðg ! 1Þ ¼ 1

ð1Þ

where g ¼ yx�1=2Re1=2L and x ¼ ~x
L ; y ¼ ~y

L. The time-depen-
dent energy equation for the boundary layer is then
oT
ot

þ u
oT
ox

þ v
oT
oy

¼ 1

ReLPr
o2T
oy2

ð2Þ

where u ¼ ~u
U1

; v ¼ ~v
U1

, the non-dimensional time is
t ¼ ~tU1

L and the dissipative term was neglected. After
the coordinate transformation: ðg; nÞ ¼ ðyx�1=2Re1=2L ; xÞ,
Eq. (2) becomes

nPr
oT
ot

þ nPrf gT n �
Pr
2
fT g ¼ T gg ð3Þ

On the wall, a time varying heat flux is imposed.
Assuming that the variation takes place simultaneously
at each location along the plate, so that heat flux is uni-
form along the wall, the boundary conditions become

�k
oT
o~y

� �
y¼0

¼ qwðtÞ; T ðn;1; tÞ ¼ T1 ð4Þ

where the function qw(t) will be considered periodic of
arbitrary shape and T1 is the free stream temperature.
3. The periodic convection

The assumption of periodic time variation allows to
split the temperature and flux fields into steady and time
varying components. Define the time-average operator
h i as

ga ¼ hgi ¼ lim
t0!1

1

t0

Z t0

0

gðtÞdt ð5Þ

and the Fourier transforms of the temperature and heat
flux fluctuating parts:
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T ðn; g; tÞ ¼ T aðn; gÞ þ
Z 1

�1
Sðn; g;xÞeixt dx;

qwðtÞ ¼ qw;a þ
Z 1

�1
eXðxÞeixt dx ð6Þ

with x ¼ ~xL
U1

¼ 2pfrL
U1

where fr is the frequency. This allows
to separate the steady problem from the time-dependent
one.

3.1. The steady problem

Applying the time-average operator h i to Eq. (3) and
to the boundary conditions (4) yields

nPrf g

oT a

on
¼ o2T a

og2
þ Pr

2
f
oT a

og
ð7Þ

qw;a ¼ � k
L

oT a

og

� �
g¼0

n�1=2Re1=2L ð8Þ

It is well known that the steady uniform heat flux prob-
lem admits similarity solutions [17] (also under a wider
range of velocity distribution in the free flow, see for
example [19,20]) under the form:

T a ¼ P ðnÞHstðgÞ; P ðnÞ ¼ An1=2 ¼ T aðn; 0Þ � T1

where A is a constant. In fact, Eqs. (7) and (8) become

o2Hst

og2
þ Pr

2
f
oHst

og
� Pr

2
fgHst ¼ 0 ð9Þ

qw;a ¼ hqwðtÞi ¼
k
L
AUstRe

1=2
L

with boundary conditions: Hst(0) = 1; Hst(1) = 0, and

Ust ¼ � oHst

og

� �
g¼0

. The numerical solution of Eq. (9) by

a fourth order Runge–Kutta method for different
Prandtl numbers confirmed that the approximation

Ust ¼ � oHst

og

� �
g¼0

¼ 0.459Pr1=3 holds for Pr > 0.6, in

accordance with [21].

3.2. The unsteady problem

From Eqs. (3), (6), (7) and (8) the following equa-
tions are found:

inPrxS þ nPrf g

oS
on

¼ o2S
og2

þ Pr
2
f
oS
og

ð10Þ

Sðn;1;xÞ ¼ 0; Sð0; g;xÞ ¼ 0;

XðxÞ ¼ �n�1=2 oS
og

� �
g¼0

ð11Þ

where

X ¼ eX L
k
Re�1=2

L ð12Þ

The solution of the problem set by Eqs. (10) and (11)
yields the boundary layer temperature fluctuation under
harmonic forcing at any frequency, then the use of Eq.
(6) allows to reconstruct the fluctuation under non-har-
monic input conditions.
4. Solutions of the periodic problem

Considering that X is independent of position and
introducing the variables: G ¼ x1=2 S

X ; w ¼ nx, Eqs.
(10) and (11) can be reduced to a more useful form

iPrwGþ wPrf g

oG
ow

¼ o
2G
og2

þ Pr
2
f
oG
og

ð13Þ

Gðn;1;xÞ ¼ 0; Gð0; g;xÞ ¼ 0;
oG
og

� �
g¼0

¼ �w1=2

ð14Þ

showing that the functional dependence of G is actually:
G = G(xn,g,Pr) = G(w,g,Pr). Consider now, without
loss of generality, the following decomposition of the
complex field G

G ¼ G0ðw; PrÞHðw; g; PrÞ

with H(w, 0,Pr) = 1; H(w,1,Pr) = 0 and G0(w,Pr) =
G(w, 0,Pr). Then Eq. (13) becomes

iPrwG0Hþ Prwf g

oG0

ow
Hþ Prwf g

oH
ow

G0

¼ G0
o2H
og2

þ Pr
2
f
oH
og

� �
ð15Þ

with the condition on G0 given by

G0ðn;xÞ ¼
w1=2

Uðw; PrÞ ð16Þ

where Uðw; PrÞ ¼ � oH
og

� �
g¼0

is the non-dimensional tem-

perature gradient at the plate surface.

4.1. The quasi-steady boundary layer

Consider now the limit for x! 0, i.e., slow time var-
iation of all variables. A solution H(g) of Eq. (15) inde-

pendent of w (that implies U ¼ � oH
og

� �
g¼0

independent of

w as well) can be found setting G0ðwÞ ¼ w1=2

UðPrÞ, then

o2H
og2

þ Pr
2
f
oH
og

¼ fg
Pr
2
H

Hð0Þ ¼ 1; Hð1Þ ¼ 0

ð17Þ

that coincides with the steady problem with uniform
heat flux condition (see Eq. (9)). U is now a real function
of Pr only and it is equal to the value found for the
steady case. The asymptotic solution for x! 0 is then

Gðw; g; PrÞ ¼ G0ðw; PrÞHðg; PrÞ

¼ w1=2

UstðPrÞ
Hstðg; PrÞ ð18Þ



Fig. 1. (a) Modulus of the function jG0j vs the non-dimensional
variable w = xn for different values of the Prandtl number. (b)
Modulus of the transfer function jF0j vs the nondimensional
variable k = xnPr1/3 for different values of Prandtl number.

Fig. 2. Comparison between the imaginary and real part of the
function F0 and the equivalent functions for the conductive
case.
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It is interesting to observe that for the harmonic case
(under the above mentioned assumptions):

T ð0; tÞ � T1 ¼ T a � T1 þ T 0ðtÞ ¼ T a � T1

þ Re G0Xx
�1=2eixt

� �
ð19Þ

qwðtÞ ¼ qw;a þ q0wðtÞ ¼ qw;a þ
k
L
n�1=2Re1=2L U

� Re G0Xx
�1=2eixt

� �
ð20Þ

then the fluctuating parts of qw(t) and Tw(t) � T1 are in
phase and the ratio

h ¼ q0wðtÞ
T 0ð0; tÞ ¼

k
L
n�1=2Re1=2L U ¼ hst ð21Þ

is equal to the value found for the steady case.

4.2. Numerical results

Eq. (10) was re-written in vectorial form as

o2G

og2
þ Pr

2
f ðgÞ oG

og
¼ Prwf g

oG

ow
þ wPrbCG

Gðn;1;xÞ ¼ 0; Gð0; g;xÞ ¼ 0;
oG

og

� �
g¼0

¼ �w1=2

with

G ¼
Gr

Gi

� �
; bC ¼

0 �1

1 0

� �

and solved numerically (for Prandtl number ranging
from 0.1 to 15) using a finite difference scheme with local
grid refinement to better catch the steepest variations.
The numerical solution of Eq. (1), by a fourth order
Runge–Kutta method and following a procedure similar
to that described in [18], provided the values of the func-
tions f(g) and fg(g) at the nodes. Fig. 1(a) shows the
function jG(w, 0,Pr)j = jG0(w,Pr)j for different values
of Pr. By the transformation: k = wPr1/3; F0(k) =
Pr1/2G0(k,Pr), all the data (for Pr > 0.6) collapse on a
single curve as shown in Fig. 1(b); only the case for
Pr = 0.1 shows a different behaviour. The asymptotic
solution for x! 0 (18), written in terms of F0(k), yields

jF 0j ¼ Pr1=2jG0j ¼ Pr1=2
w1=2

Ust

¼
ffiffiffi
k

p

UstPr�1=3

As above mentioned, Ust = 0.459Pr1/3 for Pr > 0.6, then
the asymptotic form of F0(k) is: jF0(k)j = 2.17k1/2 and
Fig. 1(b) shows this result, and also that limk!1jF0(k)j =
F1 = const. It is of certain interest to consider the anal-
ogy with a pure conduction problem (see Appendix A
for details) obtained by substituting the fluid with a thin
layer of a solid material (u,v = 0) having thickness pro-
portional to the boundary layer thickness and the same
properties of the fluid. In this case the ‘‘transfer func-
tion’’ Gc linking the wall temperature fluctuation to
the imposed heat flux can be calculated analytically
(see Appendix A). Comparing the asymptotic behaviour
when k ! 0 with the results obtained for the boundary
layer, shows that the limit limk!0jF 0ðkÞj ¼ k1=2

m holds for
both cases (choosing m = 0.459) and also the limit
limk!0jF0(k)j = F1 = 1 holds for both cases. This may
be appreciated in Fig. 2 where the results for the con-
vective and conductive case are compared having used
Uc,st = Ust. The convective terms tend to become more
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effective for intermediate exciting frequencies. The phase
delay between the imposed heat flux fluctuation and the
wall-fluid temperature difference can be calculated by
setting: S0 = S(n, 0,x) = jS0jei(f+c) and X = jXjeif where
c is the phase delay. Then

tanðcÞ ¼ ImfG0g
RefG0g

¼ � ImfUg
RefUg

with G0 ¼ w1=2

Uðn;xÞ, showing that the phase delay disappears

when x! 0. A comparison with the conductive case
shows again a common asymptotic behaviour for
x! 0 and x! 1.
Fig. 3. (a) Relative deviation of the heat transfer coefficient
from its steady value as a function of the nondimensional
variable k = xnPr1/3 (for Pr > 0.6). (b) Values of hh00i/hst and
r/hst as a function of the non-dimensional variable k = xnPr1/3

for different temperature fluctuation amplitudes (s = 0.1–0.5).
5. Heat transfer coefficient for periodic heating

When transient methods are used to estimate the heat
transfer coefficient, the hypothesis of constant coefficient
is almost universally used, despite of the fact that exper-
imental [14] and theoretical [15,16] results have evi-
denced the effect of temperature field unsteadiness on
the heat transfer coefficient. By definition

h ¼ qw
ðT s � T1Þ ¼

qw;a þ q0wðtÞ
ðT s;a � T1Þ þ T 0

wðtÞ
ð22Þ

and for the harmonic case T 0
wð0; tÞ ¼ RefS0e

ixtg; q0wðtÞ ¼
hst
Ust

RefS0Ueixtg (from (19)–(21)). It is then easy to show
that the deviation of the heat transfer coefficient from
the steady state value h00 = h � hst = h 0 + (ha � hst) is

h00 ¼ hstU
�1
st

sinðxt0ÞðUr � UstÞ þ cosðxt0ÞUi

s�1 þ sinðxt0Þ ð23Þ

where s ¼ jS0 j
ðTw;a�T1Þ < 1 (to avoid h00 becoming infinite,

then loosing its physical meaning), t 0 = t + t0 and t0 is
defined by e�ixt0 ¼ S0

jS0 j
. It should be noticed that ha = hhi

is not necessarily equal to hst (the value found for the
steady problem) in fact

ha ¼ hh00i þ hst ¼ hst
Ur

Ust

� ðUr � UstÞ
Ust

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� �

;

hh00i ¼ hst
ðUr � UstÞ

Ust

CðsÞ

with CðsÞ ¼ 1� 1ffiffiffiffiffiffiffi
1�s2

p . The values of hh00i
hst

are shown in
Fig. 3(a) (from the numerically calculated values of U)
as a function of k, showing that the deviation becomes
important only for relatively large frequencies. The fluc-
tuation amplitude of h00

r2 ¼ hh002i � hh00i2

¼ � h2st
U2

st

ðUr � UstÞ2 CðsÞ � s2

1� s2

� �
þ U2

i CðsÞ

 �

may become important also for lower frequencies (a
sample of the results is reported in Fig. 3(b) for
s = 0.1–0.5).
6. Transfer function approach to transient heating

Once the function G0 is known, it is possible to eval-
uate the wall surface temperature evolution from the
heat flux time variation and also impulsive heating prob-
lems can be analysed with sufficient approximation.
Consider as a first example the case treated in [15], the
plate is initially at a given temperature Ti = T1 with
no heat transfer, suddenly the heat flux become different
from zero and remains constant for the rest of the time,
but with uniform distribution along the plate. This prob-
lem can be approximated by a periodic one, choosing a
periodic function for the heat flux time history made by
a repetition of a heating time interval (s1) followed by a
non-heating time interval (s2). If the time interval s2 is
long enough, the plate temperature will have the time
to reach a value very close to Ti before the heat flux is
switched on again. Under this hypothesis, the problem
can be solved by using the calculated function G0

through the relation

T 0
wðn; tÞ ¼

Z 1

�1
S0ðn;xÞeixt dx

¼
Z 1

�1
G0ðn;xÞXðxÞx�1=2eixt dx ð24Þ

where eXðxÞ ¼ k
L Re

1=2
L X is the Fourier transform of the

heat flux time history. From the analysis reported in
Appendix B, it is possible to show that the results found



Fig. 5. Wall temperature variations at different position along
the wall for comparison with the results reported by [16].
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by [15] for the two cases Pr = 0.72 and Pr = 6.7 can
actually be expressed in a unique form introducing the
transformation:

h� ¼ hPr1=3; ŝ ¼ sPr�1=3

where the non-dimensional temperature h and the non-
dimensional time s are defined (following [15]) as

s ¼ U~t
~x
; h ¼ T 0

qmax

k
v~x
U1

� �1=2

It is worth to notice that the present approach allows to
show that, for Pr > 0.6, all the impulsive heating prob-
lem of this kind can be simulated by a single numerical
experiment obtained, say, with Pr = 1. The wall temper-
ature variation was calculated following this procedure
and compared to the results of [15] in Fig. 4. The agree-
ment between the two computations is quite good and
the discrepancy is lower than 0.5%. To be noticed that
the time intervals s1 and s2 where chosen so to reach a
non-dimensional temperature, before heat flux switching
on, lower than 0.5% its maximum value. Interestingly
enough, the same function G0 previously calculated
was also used to predict the results obtained by Lachi
et al. [16] under different heating conditions. In that
case, the heat flux changes from zero to a 10 W/m2

and it is maintained to that value for a given time inter-
val (0.3 s) and then it is again suddenly increased to
100 W/m2. Again this problem can be approximated
by a periodic one by choosing two large enough time
intervals Dt1 (for the non-heating period) and Dt2 (for
the 100 W/m2 heating period). The wall temperature
variation can be still obtained through Eq. (24) after cal-
culating the Fourier transform of the imposed heat flux
history. Unfortunately in [16] the value of the fluid tem-
Fig. 4. Comparison among the results reported by [15] for the
two cases Pr = 0.72 and Pr = 6.7 (obtained by image analysis on
the scanned figure reported in the cited paper) and those
obtained by the present method for Pr = 1 expressed in a unique
form though the transformation: h� ¼ hPr1=3; ŝ ¼ sPr�1=3.
perature and that of the fluid characteristics were not re-
ported and a direct comparison was not possible.
However, choosing nominal values of the fluid charac-
teristics taken at 300 K, the wall temperature evolution
(at different locations along the wall) was calculated
and presented in Fig. 5, showing a good qualitative
agreement with those reported in [16].
7. Conclusions

The analysis of the periodic heat transfer in forced
laminar boundary layer flow over a semi-infinite plate
allows to define a boundary layer ‘‘transfer function’’
which contains all the information about the relation be-
tween heat flux and wall temperature. This approach
may prove of practical use when dealing with problems
where the heat flux varies with time following an arbi-
trary law, as in fact the transfer function will permit to
simplify the analysis and predictions: once the transfer
function has been evaluated numerically, every problem
characterised by uniform distribution of heat flux along
the wall can be solved, without further numerical simu-
lation, only by calculating Fourier transforms, a method
certainly computationally more efficient than direct
numerical simulation of the unsteady heat transfer prob-
lem. The boundary layer transfer function can be used to
treat also impulsive heating problems by a suitable
approximation of the heat flux time history, and a whole
class of transient heating problems, namely those char-
acterised by a uniform distribution of the heat flux along
the plate, can be solved using the same function. A
transformation of non-dimensional time and tempera-
ture allowed to show that, for Pr > 0.6, all the impulsive
heating problem with a single step variation of the heat
flux can be simulated by a single numerical experiment
obtained, say, with Pr = 1. The effect of periodic heat
transfer on the heat transfer coefficient was evaluated
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analytically for the harmonic case, showing that the ef-
fect of the unsteadiness on the average heat transfer
coefficient becomes important only for relatively large
frequencies, while the fluctuations of the instantaneous
value of the heat transfer coefficients show a non-negli-
gible amplitude also for lower input frequencies and
low fluctuation amplitudes.
Appendix A

Consider the 1-D conduction problem set in a layer
of thickness D and properties equal to those of the fluid.
Let ~y ¼ 0 be the equation of the lower face and d ¼ D

L the
non-dimensional layer thickness. Using the non-dimen-
sional variables y ¼ ~y

L ; t ¼ ~tU1
L , and defining:

T ðy; tÞ ¼ T aðyÞ þ
Z 1

�1
Zðy;xÞeixt dx;

qwðtÞ ¼ qw;a þ
Z 1

�1
eXcðxÞeixt dx

the 1-D Fourier equation for unsteady conduction is
transformed to

ix
K

Z � o2Z
oy2

¼ 0 ð25Þ

with K ¼ a
U1L and with boundary conditions:

eXc ¼ � k
L

oZ
oy

� �
y¼0

; ZðdÞ ¼ 0 ð26Þ

Let now chose the thickness d proportional to the clas-
sical thermal boundary layer thickness, i.e., d ¼
mn1=2Re�1=2

L Pr�1=3, where n ¼ ~x
L and m is a pure number,

introducing the transformation

Gc ¼
Z
Xc

x1=2; g ¼ yn�1=2Re1=2; w ¼ xn

with again Xc ¼ eXc
L
k Re

�1=2
L , Eqs. (25) and (26) become

iwPrGc �
o2Gc

og2
¼ 0

Gcðw; g1Þ ¼ 0;
oGcðw; 0Þ

og
¼ �w1=2

ð27Þ

with g1 ¼ dn�1=2Re1=2L ¼ mPr�1=3. The solution is

Gc ¼
ebðg1�gÞ � e�bðg1�gÞffiffiffiffiffiffi
iPr

p
ðebg1 þ e�bg1Þ

with b ¼
ffiffiffiffiffiffiffiffiffi
iwPr

p
. Defining Gc,0(w) = Gc(w, 0) and setting

Gc = Gc,0(w)Hc(w,g), it is easy to find that Hc ¼
eðg1�gÞb�e�ðg1�gÞb

eg1b�e�g1b and Gc;0ðwÞ ¼ w1=2

UcðwÞ with Uc ¼ b eg1bþe�g1b

eg1b�e�g1b.
Moreover
F c0ðkÞ ¼
ffiffiffiffiffi
Pr

p
Gc0 ¼

½sinhðuÞ coshðuÞ þ sinðuÞ cosðuÞ� þ i½sinðuffiffiffi
2

p
f½cosðuÞ coshðuÞ�2 þ ½sinð
where u ¼ g1
ffiffiffiffiffi
wPr
2

q
¼ m

ffiffi
k
2

q
. The asymptotic behaviour

of Gc,0 when k ! 0, is Gc,0r ! g1w1/2 and Gc,0i ! 0,
thus, for the asymptotic case, Uc ¼ 1

g1
¼ Pr1=3

m . The
asymptotic behaviour for k !1 is instead
F c;0rðkÞ ! 1ffiffi

2
p , and F c;0iðkÞ ! � 1ffiffi

2
p .
Appendix B

Define a non-dimensional time as: ŝ ¼ U~t
~x Pr

�1=3; from
the definition of F0 the temperature fluctuation can be
written as

T 0
wðn; tÞ ¼

Z 1

�1
S0ðn;xÞeixt dx

¼
Z 1

�1
G0ðn;xÞXðxÞx�1=2eixt dx

¼
Z 1

�1

F 0X

n1=2Pr2=3k1=2
eikŝ dk

Consider now a step variation in the wall heat flux, that
can be written as

qwðtÞ ¼
qmax

2
þ qmax

2
HðtÞ; HðtÞ ¼

1; t > 0

�1; t < 0




then the function X(x) can be evaluated through the in-
verse Fourier transform as

eX ¼ 1

2p

Z 1

�1

qmax

2
HðtÞe�ixt dt

¼ qmaxPr
1=3n

4p

Z 1

�1
HðŝÞe�ikŝ dŝ ¼ qmaxPr

1=3nNðkÞ
Using Eq. (12)

T 0
wðn; tÞ ¼

qmaxn
1=2L

kPr1=3Re1=2L

Z 1

�1

F 0ðkÞNðkÞ
k1=2

eikŝ dk

¼ qmaxn
1=2L

kPr1=3Re1=2L

MðŝÞ ð28Þ
and introducing the non-dimensional temperature (see

[15]) h ¼ T 0

qmax
k

v~x
U1ð Þ1=2

¼ T 0 kRe1=2L

qmaxLn
1=2 Eq. (28) becomes

h� ¼ hPr1=3 ¼ MðŝÞ
Þ cosðuÞ � coshðuÞ sinhðuÞ�
uÞ sinhðuÞ�2g
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